

Machine Learning

How Smart Can It Really Be?

March 11, 2019

Shayne Champion

CISO

Conversant Group

Overview: Today's Agenda

1) Definitions

- 2) Machine Learning
- 3) Neural Networks
- 4) Pitfalls
- 5) Cyber Applications

Definitions

What is Learning?

learn.ing / larniNG/ noun

The <u>ability</u> to acquire and apply knowledge and skills.

Source: google.com "define learning"; Machine Learning: For Beginners

What is Intelligence?

in-tel·li-gence /in 'telajans/ noun

The acquisition of knowledge or skills through experience, study, or by being taught.

Change influenced by previous experience

Artificial Intelligence (AI)

Machines that can perform tasks that are characteristic of **human intelligence** (*e.g., planning, understanding language, recognizing objects and sounds, learning, and problem solving*)

Two types of AI

a) General AI:

Has *all* of the characteristics of human intelligence

b) Narrow (Specific) AI:

Exhibits *some* facet(s) of human intelligence, and can do that facet extremely well, but is lacking in other areas

The Turing Test

The exhibition of natural intelligence in a machine a machine would be indistinguishable from a human being in natural language conversation.

Source: Machine Learning: For Beginners

Recap: Artificial Intelligence

Intelligence: The *ability* to <u>acquire</u> and <u>apply</u> knowledge and skills Learning: The *acquisition* of knowledge or skills

Artificial Intelligence

Machine Learning

Machine Learning (ML)

Algorithms that receive data and apply statistical analysis to predict the output data within an acceptable range.

Goals of ML

- Adapt and change from previous experience based on pattern recognition & iteratively adjust response without human intervention (the algorithm outputs become new inputs)
- b) Standardize' the development of Al...'without programming'

ML Types

<u></u>

1) Supervised

- Regression (numeric)
- Classification (class | | tag)

Source: Machine Learning: For Beginners, http://cdn2.hubspot.net/hubfs/305377/Supervised_vs_Unsupervised_ML.png

1) Supervised

2) Re-enforced Learning

Source: Machine Learning: For Beginners, http://cdn2.hubspot.net/hubfs/305377/Supervised_vs_Unsupervised_ML.png

Source: Machine Learning: For Beginners, http://cdn2.hubspot.net/hubfs/305377/Supervised_vs_Unsupervised_ML.png

- 1) Supervised
- 2) Re-enforced Learning

3) Unsupervised

Source: Machine Learning: For Beginners, http://cdn2.hubspot.net/hubfs/305377/Supervised_vs_Unsupervised_ML.png

Deep Learning

What society thinks I do

What my friends think I do

What mathematicians think I do

What other computer scientists think I do

Recap: ML Types

		INPUT	OUTPUT	FEEDBACK
1)	Supervised	Human Sorted	Human Review	Human
2)	Re-enforced Learning	Unsorted	Human Review	Human
3)	Unsupervised	Unsorted	Algorithm	Algorithm

- Unsupervised is more extensible
- Unsupervised cannot make value judgements

ML Methods

ML Methods: Linear Regression

A model of the relationship between a scalar **dependent variable** *Y* and **one or more explanatory variables** (or independent variables) denoted *X*.

ML Methods: Decision Trees

Data is continuously split according to certain parameters based on human input.

Source: Types of Machine Learning Algorithms, http://www.intechopen.com/books/new-advances-in-machinelearning

ML Methods: Bayesian Networks

A **probabilistic** graphical model representing **variables** and the **relationships** between

Source: : "A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection."

ML Methods: Clustering

Grouping a set of objects in such a way that objects in the same group (called a 'cluster') are **more similar** (in some sense) to each other **than to those in other groups**.

Source: https://en.wikipedia.org/wiki/Cluster_analysis, Introduction to Machine Learning,

https://github.com/sinanuozdemir/sfdat28/blob/master/notebooks/06_logistic_regression.ipynb

Just Covering the Basics

Source: https://jixta.wordpress.com/2015/07/17/machine-learning-algorithms-mindmap/

Neural Networks

What House to buy?

Source: https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Neural Network Example

Source: https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Recap: AL & ML Terms

Artificial Intelligence:

When Machines act like a real person; "General" Al (In all aspects)

• Machine Learning: Uses algorithms to predict patterns; all current AI is "Specific" (Type of AI – limited application [like a savant])

• Deep Learning

Algorithm that uses Neural Networking (Type of ML, multiple levels of variables)

WARNING: WARNING: Cyber Traps Cyberad

Trim/normalize data

Source: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

Manipulation Biases

Source: https://github.com/stephlocke/lazyCDN/blob/master/DinoSequential.gif?raw=true

Manipulation Biases

Clustering Example

Source: https://github.com/sinanuozdemir/sfdat28/blob/master/notebooks/06_logistic_regression.ipynb,

Not all Algorithms are the Same

Parametric

Circle classification Logistic Regression

Non-Parametric

Circle classification (k=9)

Source: https://github.com/sinanuozdemir/sfdat28/blob/master/notebooks/06_logistic_regression.ipynb,

Neural Network Assumptionns

Source: https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

More "A" than "I"...

Malicious Code

 $\sum_{x_i=0} zerosum0x0 \bigoplus_{i=0}^{\infty} @zerosum0x0$

t's a DEBUG build too...

#include <stdio.h>

```
int main()
{
    printf("Hello world!\n");
    return 0;
}
```

Antivirus	Result	
CrowdStrike Falcon (ML)	malicious_confidence_80% (D)	
Cylance	Unsafe	
Cyren	W32/S-d2b5872alEldorado	
F-Prot	W32/S-d2b5872alEldorado	
Sophos ML	heuristic	
McAfee-GW-Edition	BehavesLike.Win32.Trojan.nt	
SentinelOne (Static ML)	static engine - malicious	

Source: https://arxiv.org/abs/1412.6572ificial-intelligence, "Deep Learning with Python"

Al-n't Perfect

INTELLIGENCE... you keep using that word

l do not think it means what you think it means

Ć

Source: https://www.theverge.com/2017/4/12/15271874/ai-adversarial-images-fooling-attacks-artificial-intelligence

Al-n't Perfect: Chihuahua or chocolate chip muffin?

50

http://imgur.com/a/K4RWn

Al-n't Perfect: Labradoodle or fried chicken?

http://imgur.com/a/K4RWn

Al-n't Perfect: Sheepdog or Mop?

Al is easily confused

Abstraction Modeling

The Problem with Abstraction

Source: "Deep Learning with Python"

Al Failures: Real-World

First death due to self-driving car March 18, 2018

Source: https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html

Pitfalls: Summary

- Training
 - -Test data
 - -Over & under fitting
- Abstraction
- Bias & hidden weighting
- Data assumptions
- Errors
- Perturbation

"...we have to bias our algorithms so that you never trust any one individual or any one team. It is a careful(ly) controlled dance to build these types of systems to produce general purpose, general results that applies to all organizations."

-Greg Martin, JASK (jask.ai)

If 'cloud computing' is just someone else's data center, most Machine Learning is just <u>someone else's assumptions</u>.

Cyber Applications

White Hat Al

"...while AI systems can exceed human performance in many ways, they can also fail in ways that a human never would."

-The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation

- Network Management
- Data: Visualization, Log patterns, UBA
- First-Level SOC analysis?
- Augment (<u>not replace</u>) the Human
- Reverse Engineering (GHIDRA)
- IoT = ANN 'sense' organs

It **IS NOT** a silver bullet!

White Hat AI: 5 Questions to Ask

- 1) Technical Components
- 2) Flexibility
- 3) Applications
- 4) AI/ML Updates
- 5) Your Security Team's Skillset

Black Hat Al

• Data Poisoning

"Al systems and the knowledge of how to design them can be put toward both ... beneficial and harmful ends ... artificial intelligence is dual-use in the same sense that human intelligence is."

-The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation

- Scales the Attack (#, speed, & targets)
- Discover New Attack Vectors FAST
- Exploit AI Vulnerabilities
- Increase anonymity & psychological distance

Unique Data

Including physical,

voice, images...

Source: The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation

AI/ML Musts

- Al <u>must</u> be able to explain 'why' (for Audit and Compliance)
- Plan for & design continuous learning feedback loops
- Governance processes

 assurance/guardrails for Al
 insights & recommendations

Source: https://dzone.com/articles/artificial-intelligence-will-automate-business-pro

Source: https://thispersondoesnotexist.com

Cyber Applications: Summary

- Good at similar, predictable data
- Good at sifting data w/ patterns
- Assist not replace the human
- Speeds everything up including bad guys & how fast we break crap
- New & faster exploits
- Increase of psychological distance

In Review...

Review: What We Covered Today

1) Definitions

2) Machine LearningTypesMethods

3) Neural Networks

5) Cyber Applications

References

Ayodele, Taiwo Oladipupo. "Types of Machine Learning Algorithms." University of Portsmouth, http://www.intechopen.com/books/new-advances-in-machinelearning.

- Benjamin, Paul. "US7784099B2 System for Intrusion Detection and Vulnerability Assessment in a Computer Network Using Simulation and Machine Learning." *Google Patents*, Google, 18 Feb. 2005, patents.google.com/patent/US7784099B2/en.
- Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfnkel, B., Anderson, H., Flynn, C., Farquhar, S., Page, M., Dafoe, A., Roff, H., Ó hÉigeartaigh, S., Lyle, C., Bryson, J., Scharre, P., Allen, G., Beard, S., Yampolskiy, R., Zeitzoff, T., Steinhardt, J., Belfeld, H., Evans, O., Amodei, D., Filar, B.. "The Malicious Use of Artificial Intelligence: Forecasting Prevention and Mitigation", https://maliciousaireport.com, Feb. 2018.
- Buczak, Anna L., and Erhan Guven. "A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection." *IEEE Communications Surveys & Tutorials*, vol. 18, no. 2, 26 Oct. 2015, pp. 1153–1176., http://ieeexplore.ieee.org/document/7307098/.
- Chollet, Francois. "Deep Learning with Python." Manning Publications, Chapter 9 section 2, Nov 2017, https://blog.keras.io/the-limitations-of-deep-learning.html
- Dzone. "The DZone guide to Artificial Intelligence: Machine Learning and Artificial Intelligence volume 1". https://dzone.com/articles/10-enterprise-machine-learning-predictions-for-201
- Levy, Brian. "How will AI and machine learning impact CSPs?". August 31, 2017, https://inform.tmforum.org/dataanalytics-and-ai/2017/08/will-ai-machine-learning-impact-csps/

References

Nicholson, Chris V., Gibson, Adam, Skymind team. "Introduction to Deep Neural Networks." Deeplearning4j: Open-Source, Distributed Deep Learning for the JVM", deeplearning4j.org/neuralnet-overview.

Ozdemir, Sinan. Logistic Regression; https://www.linkedin.com/in/sinan-ozdemir.

- Omerisk, Joh. "Cutting Through the Jargon of AI & ML: 5 Key Issues." https://www.darkreading.com/vulnerabilities--threats/cutting-through-the-jargon-of-ai-and-ml-5-key-issues/a/d-id/1333595
- Richards, Ken. Machine Learning: For Beginners Your Starter Guide For Data Management, Model Training, Neural Networks, Machine Learning Algorithms: Volume 1.
- Smith, Tom. 'Artificial Intelligence will Automate Business Processes'. Interview with Matt Sanchez, November 9, 2017. https://dzone.com/articles/artificial-intelligence-will-automate-business-pro
- Smola, Alex and Vishwanathan, S.V.N.. Introduction to Machine Learning. Cambridge University Press, 2008. http://alex.smola.org/drafts/thebook.pdf
- Tchircoff, Andrew. "The Mostly Complete Chart of Neural Networks, Explained." Towards Data Science, Towards Data Science, 4 Aug. 2017, towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464.

Zeolla, Jon. "Cutting Through the Buzz: Machine Learning and Artificial Intelligence". http://www.threeriversinfosec.com/wp-content/uploads/2017/07/2017-10-Cutting-Through-The-Buzz-Machine-Learning-and-AI.pdf; October 20, 2017. Video at https://www.youtube.com/watch?v=61qJnY9njgs

Have questions?

shayne.champion@conversantgroup.com 423.602.7789 https://www.linkedin.com/in/shaynechampion

@TNfoSec

(j/+^

Machine Learning

How Smart Can It Really Be?

This presentation will evaluate Machine Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI) as used within cyber security. During the session we will explore the difference between ML, DL, and AI, and show how these technologies work - as well as their shortcomings. Finally, we will discuss how these tools could work to help reduce risk and how to apply them in your security environment.

- Definitions
- Machine Learning
 - Types
 - Methods
- Neural Networks
- Errors
 - Assumptions
 - Biases
 - Pitfalls
- Cyber Applications

